Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151220 by peter frank last updated on 19/Aug/21

show that   ∫_0 ^(π/2) ((cos x)/(cos x+sin x+1))dx=(1/4)(π−2ln 2)

showthat0π2cosxcosx+sinx+1dx=14(π2ln2)

Answered by ArielVyny last updated on 19/Aug/21

t=tan((x/2))→dt=(1/2)(1+t^2 )dx  ∫_0 ^1 (((1−t^2 )/(1+t^2 ))/(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1))×(2/(1+t^2 ))dt=2∫_0 ^1 (((1−t^2 )/(1+t^2 ))/((1−t^2 )+(2t)+(1+t^2 )))dt  =2∫_0 ^1 ((1−t^2 )/(1+t^2 ))×(1/(2+2t))dt=∫_0 ^1 (((1−t))/((1+t^2 ))) dt=∫_0 ^1 (1/(1+t^2 ))dt−∫_0 ^1 (t/(1+t^2 ))dt  =∫_0 ^1 (1/(1+t^2 ))dt−∫_0 ^1 (t/(1+t^2 ))dt=(π/4)−Σ(−1)^n ∫_0 ^1 t^(2n+1)   (π/4)−Σ(−1)^n (1/(2n+2))=(π/4)−(1/2)ln(2)  ∫_0 ^(π/2) ((cosx)/(cosx+sinx+1))=(π/4)−(1/2)ln(2+

t=tan(x2)dt=12(1+t2)dx011t21+t21t21+t2+2t1+t2+1×21+t2dt=2011t21+t2(1t2)+(2t)+(1+t2)dt=2011t21+t2×12+2tdt=01(1t)(1+t2)dt=0111+t2dt01t1+t2dt=0111+t2dt01t1+t2dt=π4Σ(1)n01t2n+1π4Σ(1)n12n+2=π412ln(2)0π2cosxcosx+sinx+1=π412ln(2+

Commented by peter frank last updated on 19/Aug/21

thank you

thankyou

Answered by Lordose last updated on 19/Aug/21

  Ω = ∫_0 ^(𝛑/2) ((cos(x))/(cos(x)+sin(x)+1))dx =^(t=tan((x/2))) ∫_0 ^( 1) (((1−t^2 )/(1+t^2 ))/((1+t^2 )(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1)))dt  Ω = 2∫_0 ^( 1) (((1−t^2 ))/((1+t^2 )(1−t^2 +2t+1+t^2 ))) = ∫_0 ^( 1) ((1−t)/(1+t^2 ))dt  Ω = ∫_0 ^( 1) (1/(1+t^2 ))dt − (1/2)∫_0 ^( 1) ((2t)/(1+t^2 ))dt  𝛀 = (𝛑/4) − (1/2)ln(2)

Ω=0π2cos(x)cos(x)+sin(x)+1dx=t=tan(x2)011t21+t2(1+t2)(1t21+t2+2t1+t2+1)dtΩ=201(1t2)(1+t2)(1t2+2t+1+t2)=011t1+t2dtΩ=0111+t2dt12012t1+t2dtΩ=π412ln(2)

Commented by peter frank last updated on 19/Aug/21

thank you

thankyou

Answered by Lordose last updated on 19/Aug/21

  Ω = ∫_0 ^(𝛑/2) ((cos(x))/(cos(x)+sin(x)+1))dx =^(t=tan((x/2))) ∫_0 ^( 1) (((1−t^2 )/(1+t^2 ))/((1+t^2 )(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1)))dt  Ω = 2∫_0 ^( 1) (((1−t^2 ))/((1+t^2 )(1−t^2 +2t+1+t^2 ))) = ∫_0 ^( 1) ((1−t)/(1+t^2 ))dt  Ω = ∫_0 ^( 1) (1/(1+t^2 ))dt − (1/2)∫_0 ^( 1) ((2t)/(1+t^2 ))dt  𝛀 = (𝛑/4) − (1/2)ln(2)

Ω=0π2cos(x)cos(x)+sin(x)+1dx=t=tan(x2)011t21+t2(1+t2)(1t21+t2+2t1+t2+1)dtΩ=201(1t2)(1+t2)(1t2+2t+1+t2)=011t1+t2dtΩ=0111+t2dt12012t1+t2dtΩ=π412ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com