Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82446 by M±th+et£s last updated on 21/Feb/20

show that  ∫_0 ^∞ x^(−log(x))  x log(x) dx=e(√π)

showthat0xlog(x)xlog(x)dx=eπ

Commented by abdomathmax last updated on 21/Feb/20

changement logx=t give x=e^t  ⇒  I= ∫_(−∞) ^(+∞)  (e^t )^(−t) e^t t e^t  dt  =∫_(−∞) ^(+∞) t e^(−t^2 +2t)  dt  =∫_(−∞) ^(+∞)  t e^(−(t^2 −2t +1−1)) dt  =∫_(−∞) ^(+∞)  t e^(−(t−1)^2 +1)  dt =_(t−1=u)   e∫_(−∞) ^(+∞) (u+1)e^(−u^2 ) du  but  ∫_(−∞) ^(+∞) (u+1)e^(−u^2 ) du  =∫_(−∞) ^(+∞)  u e^(−u^2 ) du +∫_(−∞) ^(+∞)  e^(−u^2 ) du  =[−(1/2)e^(−u^2 ) ]_(−∞) ^(+∞)  +(√π)=0+(√π) ⇒  I =e(√π)

changementlogx=tgivex=etI=+(et)tettetdt=+tet2+2tdt=+te(t22t+11)dt=+te(t1)2+1dt=t1=ue+(u+1)eu2dubut+(u+1)eu2du=+ueu2du++eu2du=[12eu2]++π=0+πI=eπ

Commented by M±th+et£s last updated on 21/Feb/20

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 21/Feb/20

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com