All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 22536 by NECx last updated on 20/Oct/17
showthat(a+b+c)2a2+b2+c2=cot12A+cot12B+cot12CcotA+cotB+cotCpleasehelp
Commented by ajfour last updated on 20/Oct/17
Anothersolution:seeQ.22576
Answered by $@ty@m last updated on 20/Oct/17
WehavecotA2=s(s−a)(s−b)(s−c)−−(1)LetsinAa=sinBb=sinCc=k⇒cotA=cosAsinA=b2+c2−a22bcak=b2+c2−a22abck−−(2)Using(1)&(2)R.H.S.=cot12A+cot12B+cot12CcotA+cotB+cotC=s(s−a)(s−b)(s−c)+s(s−b)(s−a)(s−c)+s(s−c)(s−b)(s−a)b2+c2−a22abck+a2+c2−b22abck+a2+b2−c22abck=2abck(s−a)(s−b)(s−c).s(s−a)2+s(s−b)2+s(s−c)2b2+c2−a2+a2+c2−b2+a2+b2−c2=2abcks(s−a)(s−b)(s−c).s{(s−a)+(s−b)+(s−c)}a2+b2+c2=2abck12bcsinA.s{3s−(a+b+c)}a2+b2+c2=4.s{3s−2s}a2+b2+c2=4.s2a2+b2+c2=(2s)2a2+b2+c2=(a+b+c)2a2+b2+c2=L.H.S.
Commented by NECx last updated on 20/Oct/17
wow.....i′mmostgrateful.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com