Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 63426 by Rio Michael last updated on 04/Jul/19

show that   (a) cos[2cos^(−1) (x) +sin^(−1) (x)]= −(√(1−x^2 ))   (b) ((sinα + sinβ)/(cosα−cosβ))=cot(((β−α)/2))  (c) 2cos((π/3)+p)≊ 1−(√3) if p is small enough to neglect p^2 .  (d) if θ =(1/2)sin^(−1) ((3/4)), show that sinθ−cosθ = ±(1/2)  (e)write tan3A in terms of tanA  (f) Factorise cosθ − cos3θ−cos5θ+cos7θ  (g)i) verify that f(x)=((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2tan3θ)/(1−tan^2 3θ))    ii) hence find in radians the general solution of  f(x)=1  sir Forkum Michael

showthat(a)cos[2cos1(x)+sin1(x)]=1x2(b)sinα+sinβcosαcosβ=cot(βα2)(c)2cos(π3+p)13ifpissmallenoughtoneglectp2.(d)ifθ=12sin1(34),showthatsinθcosθ=±12(e)writetan3AintermsoftanA(f)Factorisecosθcos3θcos5θ+cos7θ(g)i)verifythatf(x)=sin2θ+sin10θcos2θ+cos10θ=2tan3θ1tan23θii)hencefindinradiansthegeneralsolutionoff(x)=1sirForkumMichael

Commented by Tony Lin last updated on 04/Jul/19

(a)  let θ=cos^(−1) (x)⇒cosθ=x  let (π/2)−θ=sin^(−1) (x)⇒sinθ=(√(1−x^2 ))  cos[2θ+((π/2)−θ)]  =cos((π/2)+θ)  =−sinθ  =−(√(1−x^2 ))

(a)letθ=cos1(x)cosθ=xletπ2θ=sin1(x)sinθ=1x2cos[2θ+(π2θ)]=cos(π2+θ)=sinθ=1x2

Commented by Tony Lin last updated on 04/Jul/19

(b)  ((sinα+sinβ)/(cosα−cosβ))  =((2sin(((α+β)/2))cos(((α−β)/2)))/(−2sin(((α+β)/2))sin(((α−β)/2))))  =((−cos(((α−β)/2)))/(sin(((α−β)/2))))  =cot(((β−α)/2))

(b)sinα+sinβcosαcosβ=2sin(α+β2)cos(αβ2)2sin(α+β2)sin(αβ2)=cos(αβ2)sin(αβ2)=cot(βα2)

Commented by Tony Lin last updated on 04/Jul/19

(d)  θ=(1/2)sin^(−1) ((3/4))  2θ=sin^(−1) ((3/4))  ⇒(3/4)=sin2θ  ⇒(3/4)=2sinθcosθ  (sinθ−cosθ)^2   =1−2sinθcosθ  =(1/4)  ⇒sinθ−cosθ=±(1/2)

(d)θ=12sin1(34)2θ=sin1(34)34=sin2θ34=2sinθcosθ(sinθcosθ)2=12sinθcosθ=14sinθcosθ=±12

Commented by Tony Lin last updated on 04/Jul/19

(e)  tan3A  =tan(A+2A)  =((tanA+tan2A)/(1−tanAtan2A))  =((tanA+((2tanA)/(1−tan^2 A)))/(1−((2tan^2 A)/(1−tan^2 A))))  =((3tanA−tan^3 A)/(1−3tan^2 A))

(e)tan3A=tan(A+2A)=tanA+tan2A1tanAtan2A=tanA+2tanA1tan2A12tan2A1tan2A=3tanAtan3A13tan2A

Commented by Rio Michael last updated on 05/Jul/19

please explain the occurance of    (sinθ−cosθ)^2

pleaseexplaintheoccuranceof(sinθcosθ)2

Answered by som(math1967) last updated on 04/Jul/19

g(i) ((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2sin6θcos4θ)/(2cos6θcos4θ))=tan6θ  again tan6θ=tan2.3θ=((2tan3θ)/(1−tan^2 3θ))  ii) Again ((2tan3θ)/(1−tan^2 3θ))=1  ⇒tan^2 3θ+2tan3θ=1  ⇒tan^2 3θ+2tan3θ+1=2  ⇒(tan3θ+1)^2 =2  ⇒tan3θ=(√2) −1=tan(π/8)  ∴3θ=nπ+(π/8) ∴θ=(1/3)(nπ+(π/8))

g(i)sin2θ+sin10θcos2θ+cos10θ=2sin6θcos4θ2cos6θcos4θ=tan6θagaintan6θ=tan2.3θ=2tan3θ1tan23θii)Again2tan3θ1tan23θ=1tan23θ+2tan3θ=1tan23θ+2tan3θ+1=2(tan3θ+1)2=2tan3θ=21=tanπ83θ=nπ+π8θ=13(nπ+π8)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com