Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 77872 by berket last updated on 11/Jan/20

show that f(x)=2r^3 +5x−1 has a zero in the interval [0.1].

showthatf(x)=2r3+5x1hasazerointheinterval[0.1].

Commented by key of knowledge last updated on 11/Jan/20

r^3  or x^3

r3orx3

Commented by mathmax by abdo last updated on 11/Jan/20

f(x)=2x^3 +5x−1 ⇒f^′ (x)=6x^2  +5 >0 ⇒f is increasing on R  f(0)=−1<0 and f(1)=2+5−1 =6>0 ⇒∃! α_0  ∈]0,1[ /f(α_0 )=0  we can use newton method  by taking x_0 =(1/2) and  x_(n+1) =x_n −((f(x_n ))/(f^′ (x_n ))) ⇒x_1 =x_0 −((f(x_0 ))/(f^′ (x_0 )))=(1/2)−((f((1/2)))/(f^′ ((1/2))))  f((1/2))=(1/4)+(5/2)−1 =((1+10−4)/4) =(7/4)  f^′ ((1/2))=(6/4)+5 =(3/2)+5 =((13)/2) ⇒x_1 =(1/2)−((7/4)/((13)/2)) =(1/2)−(7/4)×(2/(13)) =(1/2)−(7/(26))  x_1 =((13−7)/(26)) =(6/(26)) =(3/(13)) ⇒x_1 ∼0,23   we fllow the same way to calculate  x_2 ,x_3 ,x_4 ,...

f(x)=2x3+5x1f(x)=6x2+5>0fisincreasingonRf(0)=1<0andf(1)=2+51=6>0!α0]0,1[/f(α0)=0wecanusenewtonmethodbytakingx0=12andxn+1=xnf(xn)f(xn)x1=x0f(x0)f(x0)=12f(12)f(12)f(12)=14+521=1+1044=74f(12)=64+5=32+5=132x1=1274132=1274×213=12726x1=13726=626=313x10,23wefllowthesamewaytocalculatex2,x3,x4,...

Commented by jagoll last updated on 12/Jan/20

oo yes. it my typo. i correct

ooyes.itmytypo.icorrect

Commented by jagoll last updated on 12/Jan/20

haha  same sir ((277×8)/(432×8))=((2216)/(3456))

hahasamesir277×8432×8=22163456

Commented by jagoll last updated on 12/Jan/20

ohh yes sir  i′m typo againt . hahaha

ohhyessirimtypoagaint.hahaha

Commented by jagoll last updated on 12/Jan/20

thank you for cheking, sir. i tried  to work with the Cardano   process. it turns out there was   a calculation error. thank you sir

thankyouforcheking,sir.itriedtoworkwiththeCardanoprocess.itturnsouttherewasacalculationerror.thankyousir

Answered by Rio Michael last updated on 11/Jan/20

say f(x) = 2x^3  + 5x − 1  f(0) = 2(0)^3 +5(0) − 1= −1  f(1) = 2 + 5 − 1 = 6  a change of sign from − to + in the  interval [0,1] shows that f(x) has   a root or zero in this interval.

sayf(x)=2x3+5x1f(0)=2(0)3+5(0)1=1f(1)=2+51=6achangeofsignfromto+intheinterval[0,1]showsthatf(x)hasarootorzerointhisinterval.

Answered by mr W last updated on 11/Jan/20

2x^3 +5x−1=0  x=(((√(((5/6))^3 +((1/4))^2 ))+(1/4)))^(1/3) −(((√(((5/6))^3 +((1/4))^2 ))−(1/4)))^(1/3)   =((((√(831))/(36))+(1/4)))^(1/3) −((((√(831))/(36))−(1/4)))^(1/3)   ≈0.1969

2x3+5x1=0x=(56)3+(14)2+143(56)3+(14)2143=83136+143831361430.1969

Commented by john santu last updated on 13/Jan/20

how get (((√(((5/6))^3 +((1/4))^2 ))+ (1/4)))^(1/3) ...?  i got −(1/4)

howget(56)3+(14)2+143...?igot14

Commented by mr W last updated on 13/Jan/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com