Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 80823 by M±th+et£s last updated on 06/Feb/20

show that   lim_(x→∞)  H_n =2F_1 (1,1;2,1)    ln(4)−2ln(3)=2F_1 (1,1;2;((−1)/2))

showthatlimxHn=2F1(1,1;2,1)ln(4)2ln(3)=2F1(1,1;2;12)

Answered by ~blr237~ last updated on 07/Feb/20

knowing that  _2 F_1 (a,b,c,z)=(1/(B(b,c−b)))∫_0 ^1 x^(b−1) (1−x)^(c−b−1) (1−zx)^(−a) dx   _2 F_1 (1,1,2,1)=(1/(B(1,2−1)))∫_0 ^1 x^(1−1) (1−x)^(2−1−1) (1− 1×x)^(−1) dx                        = ((Γ(2))/(Γ(1)Γ(1))) ∫_0 ^1 (1/(1−x))dx                     =Σ_(n=0) ^∞  ∫_0 ^1 x^n dx =Σ_(n=0) ^∞  (1/(n+1)) =lim_(n→∞)  Σ_(p=1) ^(n+1) (1/p)     _2 F_1 (1,1,2,−(1/2))= (1/(B(1,1)))∫_0 ^1 (1/(1+(x/2)))dx=[2ln(1+(x/2))]_0 ^1 =2ln((3/2))=2ln3−ln4

knowingthat2F1(a,b,c,z)=1B(b,cb)01xb1(1x)cb1(1zx)adx2F1(1,1,2,1)=1B(1,21)01x11(1x)211(11×x)1dx=Γ(2)Γ(1)Γ(1)0111xdx=n=001xndx=n=01n+1=limnn+1p=11p2F1(1,1,2,12)=1B(1,1)0111+x2dx=[2ln(1+x2)]01=2ln(32)=2ln3ln4

Commented by M±th+et£s last updated on 07/Feb/20

thank you so much sir . great

thankyousomuchsir.great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com