Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 67697 by Rasheed.Sindhi last updated on 30/Aug/19

⋓si⋒g ChineseRemainderTheorm  ∂etermine polynomial p(x) such that            p(x)≡8(mod x+1)          p(x)≡−24(mod x+3)          p(x)≡6(mod x)          p(x)≡0(mod x+2)

sigChineseRemainderTheormeterminepolynomialp(x)suchthatp(x)8(modx+1)p(x)24(modx+3)p(x)6(modx)p(x)0(modx+2)

Answered by Rasheed.Sindhi last updated on 01/Sep/19

 { ((p(x)≡8(mod x+1))),((p(x)≡−24(mod x+3))),((p(x)≡6(mod x))),((p(x)≡0(mod x+2))) :}  Let m_1 =x+1,m_2 =x+3,m_3 =x,m_4 =x+2  Note that (m_i ,m_j )=1 for ∀ i≠j  (pairwise coprime)  Let M=m_1 m_2 m_3 m_4 =(x+1)(x+3)(x)(x+2)     M_1 =(M/m_1 )=m_2 m_3 m_4 =(x+3)(x)(x+2)     M_2 =(M/m_2 )=m_1 m_3 m_4 =(x+1)(x)(x+2)     M_3 =(M/m_3 )=m_1 m_2 m_4 =(x+1)(x+3)(x+2)     M_4 =(M/m_4 )=m_1 m_2 m_3 =(x+1)(x+3)(x)  Note that (M_i ,m_i )=1  ∴   M_i y≡1(mod m_i )   (x+3)(x)(x+2)H_1 (x)≡1(mod x+1)             (x^3 +5x^2 +6x)H_1 (x)≡1(mod x+1)   Let H_1 (x)=h_1 (a constant)   (((−1)),h_1 ,( 5h_1 ),(   6h_1 ),(     −1)),(,,(−h_1 ),(−4h_1 ),(    −2h_1 )),(,h_1 ,(  4h_1 ),(    2h_1 ),(   −2h_1 −1)) )   −2h_1 −1=0⇒h_1 =−1/2   (x+1)(x)(x+2)H_2 (x)≡1(mod x+3)            (x^3 +3x^2 +2x)H_2 (x)≡1(mod x+3)  If H_2 (x)=h_2 (constant)  h_2 =−1/6 (By similar process)   (x+1)(x+3)(x+2)H_3 (x)≡1(mod x)             (x^3 +6x^2 +11x+6)H_3 (x)≡1(mod x)  If H_3 (x)=h_3 (constant)    (((0)),h_3 ,(6h_3 ),(11h_3 ),(6h_3 −1)),(,,0,0,0),(,h_3 ,(6h_3 ),(11h_3 ),(6h_3 −1)) )  6h_3 −1=0⇒h_3 =1/6   (x+1)(x+3)(x)H_4 (x)≡1(mod x+2)             (x^3 +4x^2 +3x)H_4 (x)≡1(mod x+2)   If H_4 (x)=h_4    (((−2)),h_4 ,(   4h_4 ),(   3h_4 ),(−1)),(,,(−2h4),(−4h_4 ),(  2h_4 )),(,h_4 ,(   2h_4 ),(−h_4 ),(2h_4 −1)) )  2h_4 −1=0⇒h_4 =1/2    x=8(x^3 +5x^2 +6x)(−1/2)              +(−24)(x^3 +3x^2 +2x)(−1/6)                  +6(x^3 +6x^2 +11x+6)(1/6)                        +(0)(x^3 +4x^2 +3x)(1/2)  x=−4x^3 −20x^2 −24x         +4x^3 +12x^2  +  8x         +  x^3 +  6x^2 +11x+6  x=x^3 −2x^2 −5x+6

{p(x)8(modx+1)p(x)24(modx+3)p(x)6(modx)p(x)0(modx+2)Letm1=x+1,m2=x+3,m3=x,m4=x+2Notethat(mi,mj)=1forij(pairwisecoprime)LetM=m1m2m3m4=(x+1)(x+3)(x)(x+2)M1=Mm1=m2m3m4=(x+3)(x)(x+2)M2=Mm2=m1m3m4=(x+1)(x)(x+2)M3=Mm3=m1m2m4=(x+1)(x+3)(x+2)M4=Mm4=m1m2m3=(x+1)(x+3)(x)Notethat(Mi,mi)=1Miy1(modmi)(x+3)(x)(x+2)H1(x)1(modx+1)(x3+5x2+6x)H1(x)1(modx+1)LetH1(x)=h1(aconstant)(1)h15h16h11h14h12h1h14h12h12h11)2h11=0h1=1/2(x+1)(x)(x+2)H2(x)1(modx+3)(x3+3x2+2x)H2(x)1(modx+3)IfH2(x)=h2(constant)h2=1/6(Bysimilarprocess)(x+1)(x+3)(x+2)H3(x)1(modx)(x3+6x2+11x+6)H3(x)1(modx)IfH3(x)=h3(constant)(0)h36h311h36h31000h36h311h36h31)6h31=0h3=1/6(x+1)(x+3)(x)H4(x)1(modx+2)(x3+4x2+3x)H4(x)1(modx+2)IfH4(x)=h4(2)h44h43h412h44h42h4h42h4h42h41)2h41=0h4=1/2x=8(x3+5x2+6x)(1/2)+(24)(x3+3x2+2x)(1/6)+6(x3+6x2+11x+6)(1/6)+(0)(x3+4x2+3x)(1/2)x=4x320x224x+4x3+12x2+8x+x3+6x2+11x+6x=x32x25x+6

Commented by Prithwish sen last updated on 02/Sep/19

excelent.

excelent.

Commented by mr W last updated on 03/Sep/19

nice creation!

nicecreation!

Commented by Rasheed.Sindhi last updated on 04/Sep/19

Thank you both sirs!

Thankyoubothsirs!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com