Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67373 by mathmax by abdo last updated on 26/Aug/19

simplify   S_n (x) =Σ_(k=0) ^n  C_n ^k  cos^4 (πkx)  2) calculate I_n =∫_0 ^(1/3)  S_n (x)dx

simplifySn(x)=k=0nCnkcos4(πkx)2)calculateIn=013Sn(x)dx

Commented by ~ À ® @ 237 ~ last updated on 27/Aug/19

    Let state T_n =Σ_(k=0) ^n C_n ^k  sin^4 (πkx)  knowing that  cos^4 t+sin^4 t=1−((sin^2 2t)/2) =((3+cos4t)/4)  and cos^2 t −sin^2 t=cos2t  S_n +T_n =(3/4)Σ_(k=0) ^n C_n ^k  + (1/4)Σ_(k=0) ^n C_n ^k  cos(4πkx)=3.2^(n−2) +(1/4)Re(Σ_(k=0) ^n C_n ^k  (e^(i4πx) )^k )=3.2^(n−2) +(1/4)Re[(1+e^(i4πx) )^n ]                =3.2^(n−2) +(1/4) Re[e^(i2πnx) (e^(i2πx) +e^(−i2πx) )^n ]=3.2^(n−2) + 2^(n−2) cos(2πnx)(cos(2πx)^n    S_n −T_n = Σ_(k=0) ^n C_n ^k  cos(2πkx)= Re[(1+e^(i2πx) )^n ]=2^n cos(nπx)(cos(πx))^n   Now we can deduce   S_n = 2^(n−3) [ 3 +cos(2πnx)(cos(2πx))^n +4cos(nπx)(cos(πx))^n ]   But if we are searching a lowest form in the way to find I  we can use  cos^4 t= ((3+cos4t)/8) +((cos2t)/2)   I_n =  (1/3)+Σ_(k=1) ^n  C_n ^k  ∫_0 ^(1/3)  [(3/8) +((cos(4πkx))/8) +((cos(2πkx))/2)]dx     =  (1/3)+Σ_(k=1) ^n  C_(n ) ^k [ ((3x)/8) + ((sin(4πkx))/(32πk)) +((sin(2πkx))/(4πk))]_0 ^(1/3)     = ((1/3)−(1/8))+(1/8)Σ_(k=0) ^n  C_n ^k  + (1/(32π)) Σ_(k=1) ^n  C_n ^k  ((sin(((4πk)/3)))/k) +(1/(4π))Σ_(k=1) ^n C_n ^k  ((sin(((2πk)/3)))/k)

LetstateTn=nk=0Cnksin4(πkx)knowingthatcos4t+sin4t=1sin22t2=3+cos4t4andcos2tsin2t=cos2tSn+Tn=34nk=0Cnk+14nk=0Cnkcos(4πkx)=3.2n2+14Re(nk=0Cnk(ei4πx)k)=3.2n2+14Re[(1+ei4πx)n]=3.2n2+14Re[ei2πnx(ei2πx+ei2πx)n]=3.2n2+2n2cos(2πnx)(cos(2πx)nSnTn=nk=0Cnkcos(2πkx)=Re[(1+ei2πx)n]=2ncos(nπx)(cos(πx))nNowwecandeduceSn=2n3[3+cos(2πnx)(cos(2πx))n+4cos(nπx)(cos(πx))n]ButifwearesearchingalowestforminthewaytofindIwecanusecos4t=3+cos4t8+cos2t2In=13+nk=1Cnk013[38+cos(4πkx)8+cos(2πkx)2]dx=13+nk=1Cnk[3x8+sin(4πkx)32πk+sin(2πkx)4πk]013=(1318)+18nk=0Cnk+132πnk=1Cnksin(4πk3)k+14πnk=1Cnksin(2πk3)k

Commented by mathmax by abdo last updated on 27/Aug/19

thank you sir.

thankyousir.

Commented by mathmax by abdo last updated on 27/Aug/19

1) we have cos^4 u =(((1+cos(2u)/2))^2 =(1/4)(1+2cos(2u)+((1+cos(4u))/2))  =(1/8){2+4cos(2u) +1+cos(4u)} =(1/8){3 +4cos(2u)+cos(4u)}  =(3/8) +(1/2)cos(2u)+(1/8)cos(4u) ⇒  S_n =Σ_(k=0) ^n  C_n ^k  {(3/8)+(1/2)cos(2πkx)+(1/8)cos(4πkx)}  =(3/8)×2^n  +(1/2) Σ_(k=0) ^n  C_n ^k  cos(2πkx) +(1/8)Σ_(k=0) ^n  C_n ^k  cos(4πkx)}  Σ_(k=0) ^n  C_n ^k  cos(2πkx) =Re(Σ_(k=0) ^n  C_n ^k  e^(i2πkx) ) and  Σ_(k=0) ^n  C_n ^k  (e^(i2πx) )^k  =(1+e^(i2πx) )^n =(1+cos(2πx)+isin(2πx))^n   ∣1+cos(2πx)+isin(2πx)∣ =(√((1+cos(2πx))^2 + sin^2 (2πx)))  =(√(1+2cos(2πx)+1))=(√(2+2cos(2πx)))=(√2)(√(2cos^2 (πx)))  =2∣cos(πx)∣ ⇒  1+cos(2πx)+isin(2πx) =2∣cos(πx)∣ e^(i arctan(((sin(2πx))/(1+cos(2πx)))))  =2∣cos(πx)∣e^(iπx)  because  ((sin(2πx))/(1+cos(2πx))) =((2sin(πx)cos(πx))/(2cos^2 (πx))) =tan(πx) ⇒  (1+cos(2πx)+isin(2πx))^n  =2^n ∣cos(πx)∣^n  e^(inπx)  also we have  ⇒Σ_(k=0) ^(n  )  C_n ^k  cos(2πkx) =2^n ∣cos(πx)∣^n  cos(nπx) also  Σ_(k=0) ^n  C_n ^k  cos(4πkx) =2^n ∣cos(2πx)∣^n  cos(2nπx) ⇒  S_n =((3×2^n )/8) + 2^(n−1) ∣cos(πx)∣^n  cos(nπx) +2^(n−3)  ∣cos(2πx)∣^n  cos(2nπx)

1)wehavecos4u=(1+cos(2u2)2=14(1+2cos(2u)+1+cos(4u)2)=18{2+4cos(2u)+1+cos(4u)}=18{3+4cos(2u)+cos(4u)}=38+12cos(2u)+18cos(4u)Sn=k=0nCnk{38+12cos(2πkx)+18cos(4πkx)}=38×2n+12k=0nCnkcos(2πkx)+18k=0nCnkcos(4πkx)}k=0nCnkcos(2πkx)=Re(k=0nCnkei2πkx)andk=0nCnk(ei2πx)k=(1+ei2πx)n=(1+cos(2πx)+isin(2πx))n1+cos(2πx)+isin(2πx)=(1+cos(2πx))2+sin2(2πx)=1+2cos(2πx)+1=2+2cos(2πx)=22cos2(πx)=2cos(πx)1+cos(2πx)+isin(2πx)=2cos(πx)eiarctan(sin(2πx)1+cos(2πx))=2cos(πx)eiπxbecausesin(2πx)1+cos(2πx)=2sin(πx)cos(πx)2cos2(πx)=tan(πx)(1+cos(2πx)+isin(2πx))n=2ncos(πx)neinπxalsowehavek=0nCnkcos(2πkx)=2ncos(πx)ncos(nπx)alsok=0nCnkcos(4πkx)=2ncos(2πx)ncos(2nπx)Sn=3×2n8+2n1cos(πx)ncos(nπx)+2n3cos(2πx)ncos(2nπx)

Commented by mathmax by abdo last updated on 27/Aug/19

2) ∫_0 ^(1/3)  S(x)dx =∫_0 ^(1/3) {(3/8)2^n  +(1/2)Σ_(k=0) ^n  C_n ^k  cos(2πkx)+(1/8)Σ_(k=0) ^n  C_n ^k  cos(4πkx)}dx  =2^(n−3)  +(1/2)Σ_(k=0) ^n  ∫_0 ^(1/3)  cos(2πkx)dx +(1/8)Σ_(k=0) ^n  C_n ^k  ∫_0 ^(1/3)  cos(4πkx)dx  =2^(n−3)  +(1/2)Σ_(k=0) ^n (1/(2πk))[sin(2πkx]_0 ^(1/3)  +(1/8)Σ_(k=0) ^n  C_n ^k   (1/(4πk))[sin(4πkx)]_0 ^(1/3)   =2^(n−3)  + (1/(4π)) Σ_(k=0) ^n   ((sin(((2πk)/3)))/k) +(1/(32π))Σ_(k=0) ^n  C_n ^k  ((sin(((4πk)/3)))/k) .

2)013S(x)dx=013{382n+12k=0nCnkcos(2πkx)+18k=0nCnkcos(4πkx)}dx=2n3+12k=0n013cos(2πkx)dx+18k=0nCnk013cos(4πkx)dx=2n3+12k=0n12πk[sin(2πkx]013+18k=0nCnk14πk[sin(4πkx)]013=2n3+14πk=0nsin(2πk3)k+132πk=0nCnksin(4πk3)k.

Answered by Smail last updated on 27/Aug/19

cos^4 (kπx)=(1/4)(1+cos(2kπx))^2   =(1/4)(1+cos^2 (2kπx)+2cos(2kπx))  =(1/8)(2+1+cos(4kπx)+4cos(2kπx))  So, S_n (x)=(1/8)Σ_(k=0) ^n C_n ^k (3+cos(4kπx)+4cos(2kπx))  =(1/8)(3Σ_(k=0) ^n C_n ^k +Σ_(k=0) ^n C_n ^k cos(4kπx)+4Σ_(k=0) ^n C_n ^k cos(2kπx))  =(1/8)(3×2^n +Re(Σ_(k=0) ^n C_n ^k e^(4ikπx) )+4Re(Σ_(k=0) ^n C_n ^k e^(2ikπx) ))  =(1/8)(3×2^n +Re((1+e^(4iπx) )^n )+4Re((1+e^(2iπx) )^n ))  =(1/8)(3×2^n +Re((1+cos(4πx)+isin(4πx))^n )+4Re((1+cos(2πx)+isin(2πx))^n ))  =(1/8)(3×2^n +Re((2cos(2πx)e^(2iπx) )^n )+4Re((2cos(πx)e^(iπx) )^n ))  =(1/8)(3×2^n +Re(2^n cos^n (2πx)e^(2inπx) )+4Re((2^n cos^n (πx)e^(inπx) ))  =(2^n /8)(3+cos^n (2πx)cos(2nπx)+4cos^n (πx)cos(nπx))  Σ_(k=0) ^n C_n ^k cos^4 (kπx)=2^(n−3) (3+cos^n (2πx)cos(2nπx)+4cos^n (πx)cos(nπx))

cos4(kπx)=14(1+cos(2kπx))2=14(1+cos2(2kπx)+2cos(2kπx))=18(2+1+cos(4kπx)+4cos(2kπx))So,Sn(x)=18nk=0Cnk(3+cos(4kπx)+4cos(2kπx))=18(3nk=0Cnk+nk=0Cnkcos(4kπx)+4nk=0Cnkcos(2kπx))=18(3×2n+Re(nk=0Cnke4ikπx)+4Re(nk=0Cnke2ikπx))=18(3×2n+Re((1+e4iπx)n)+4Re((1+e2iπx)n))=18(3×2n+Re((1+cos(4πx)+isin(4πx))n)+4Re((1+cos(2πx)+isin(2πx))n))=18(3×2n+Re((2cos(2πx)e2iπx)n)+4Re((2cos(πx)eiπx)n))=18(3×2n+Re(2ncosn(2πx)e2inπx)+4Re((2ncosn(πx)einπx))=2n8(3+cosn(2πx)cos(2nπx)+4cosn(πx)cos(nπx))nk=0Cnkcos4(kπx)=2n3(3+cosn(2πx)cos(2nπx)+4cosn(πx)cos(nπx))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com