Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 11781 by tawa last updated on 31/Mar/17

sin(2θ) + 7cos(2θ) = 6  find θ

sin(2θ)+7cos(2θ)=6findθ

Answered by sma3l2996 last updated on 31/Mar/17

2sin(θ)cos(θ)+7cos^2 (θ)−7sin^2 (θ)=6  2sin(θ)cos(θ)+14cos^2 (θ)−7=6  2sin(θ)cos(θ)=13−14cos^2 (θ)  4(1−cos^2 (θ))cos^2 (θ)=13^2 +14^2 cos^4 (θ)−2×13×14cos^2 (θ)  4cos^2 (θ)−4cos^4 (θ)=169+196cos^4 (θ)−364cos^2 (θ)  200cos^4 (θ)−368cos^2 (θ)+169=0  200cos^4 (θ)−((2×184×10(√2))/(10(√2)))cos^2 (θ)+(((184)/(10(√2))))^2 =(((92)/(5(√2))))^2 −169  (10(√2)cos^2 (θ)−((92)/(5(√2))))^2 =((4232)/(25))−169  10(√2)cos^2 (θ)−((92)/(5(√2)))=+_− ((√(3387))/5)   cos^2 (θ)=(+_− ((√(3387))/5)+((92)/(5(√2))))(1/(10(√2)))=+_− ((√(3387))/(50(√2)))+((23)/(25))  cos(θ)=(√(((√(3387))/(50(√2)))+((23)/(25))))  θ=acos((√(((√(3387))/(50(√2)))+((23)/(25)))))+2kπ

2sin(θ)cos(θ)+7cos2(θ)7sin2(θ)=62sin(θ)cos(θ)+14cos2(θ)7=62sin(θ)cos(θ)=1314cos2(θ)4(1cos2(θ))cos2(θ)=132+142cos4(θ)2×13×14cos2(θ)4cos2(θ)4cos4(θ)=169+196cos4(θ)364cos2(θ)200cos4(θ)368cos2(θ)+169=0200cos4(θ)2×184×102102cos2(θ)+(184102)2=(9252)2169(102cos2(θ)9252)2=423225169102cos2(θ)9252=+33875cos2(θ)=(+33875+9252)1102=+3387502+2325cos(θ)=3387502+2325θ=acos(3387502+2325)+2kπ

Commented by tawa last updated on 31/Mar/17

God bless you sir

Godblessyousir

Answered by sandy_suhendra last updated on 31/Mar/17

sin 2θ + 7 cos 2θ=k cos(2θ−α)  =k cos 2θ cos α + k sin 2θ sin α  thus  k cos α=7 and k sin α=1  (k cos α)^2 +(k sin α)^2 =7^2 +1^2   k^2 (sin^2 α+cos^2 α)=50  k=(√(50))=5(√2)    ((k sin α)/(k cos α))=tan α ⇒ tan α =(1/7) ⇒α=8.13°       5(√2) cos(2θ−8.13°)=6  cos(2θ−8.13°)=(6/(5(√2)))  (1) 2θ−8.13°=31.95° + p.360°          2θ=40.08° + p.360°            θ=20.04 + p.180° ⇒p=0, 1, 2, ...       (2) 2θ−8.13°=−31.95°+p.360°          2θ=−23.82° + p.360°            θ=−11.91° + p.180° ⇒p=1, 2, 3, ...

sin2θ+7cos2θ=kcos(2θα)=kcos2θcosα+ksin2θsinαthuskcosα=7andksinα=1(kcosα)2+(ksinα)2=72+12k2(sin2α+cos2α)=50k=50=52ksinαkcosα=tanαtanα=17α=8.13°52cos(2θ8.13°)=6cos(2θ8.13°)=652(1)2θ8.13°=31.95°+p.360°2θ=40.08°+p.360°θ=20.04+p.180°p=0,1,2,...(2)2θ8.13°=31.95°+p.360°2θ=23.82°+p.360°θ=11.91°+p.180°p=1,2,3,...

Commented by tawa last updated on 31/Mar/17

God bless you sir.

Godblessyousir.

Answered by ajfour last updated on 31/Mar/17

2sin θcos θ+7(cos^2 θ−sin^2 θ )=6  dividing by cos^2 θ   we get:  2tan θ +7(1−tan^2 θ )=6sec^2 θ  2tan θ+7−7tan^2 θ=6+6tan^2 θ  13tan^2 θ−2tan θ−1=0  tan θ = ((2±(√(4+52)))/(26))  θ = tan^(−1)  (((1±(√(14)))/(13)) ) +nπ  .

2sinθcosθ+7(cos2θsin2θ)=6dividingbycos2θweget:2tanθ+7(1tan2θ)=6sec2θ2tanθ+77tan2θ=6+6tan2θ13tan2θ2tanθ1=0tanθ=2±4+5226θ=tan1(1±1413)+nπ.

Commented by tawa last updated on 31/Mar/17

God bless you sir.

Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com