Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 87488 by jagoll last updated on 04/Apr/20

sin^4 x + sin^4 (x+(π/4)) = (1/4)  x ∈ [ 0,2π ]

sin4x+sin4(x+π4)=14x[0,2π]

Commented by john santu last updated on 05/Apr/20

(2sin^2  x)^2 +(2sin^2 (x+(π/4)))^2 = 1   (1−cos 2x)^2 + (1−cos (2x+(π/2)))^2 =1  (1−cos 2x)^2  + (1+sin 2x)^2  = 1  1−2cos 2x +cos^2  2x+1+2sin 2x +sin^2  2x = 1  2sin 2x−2cos 2x = −2  cos 2x−sin 2x = 1   cos (2x+(π/4)) = (1/(√2)) = cos (π/4)  ⇒2x = −(π/4) ± (π/4)+2πn , n ∈Z  ⇒ x = −(π/8) ± (π/8) + πn   (+) ⇒ x = 0, π ,2π  (−)⇒x = −(π/4)+πn ; x = ((3π)/4), ((7π)/4)

(2sin2x)2+(2sin2(x+π4))2=1(1cos2x)2+(1cos(2x+π2))2=1(1cos2x)2+(1+sin2x)2=112cos2x+cos22x+1+2sin2x+sin22x=12sin2x2cos2x=2cos2xsin2x=1cos(2x+π4)=12=cosπ42x=π4±π4+2πn,nZx=π8±π8+πn(+)x=0,π,2π()x=π4+πn;x=3π4,7π4

Answered by mind is power last updated on 04/Apr/20

sin(x+(π/4))=((√2)/2)(sin(x)+cos(x))  sin^2 (x+(π/4))=(1/2)(1+sin(2x))  sin^4 (x+(π/4))=(1/4)(1+sin^2 (2x)+2sin(2x))  ⇔sin^4 (x)+((2sin(2x)+sin^2 (2x))/4)=0  ⇔sin(x)(4sin^3 (x)+4cos(x)+4sin(x)cos^2 (x))=0  ⇔4sin(x)(sin(x)+cos(x))=0  ⇒4(√2)sin(x)sin(x+(π/4))=0  x∈{0,π,2π,((3π)/4),((7π)/4)}

sin(x+π4)=22(sin(x)+cos(x))sin2(x+π4)=12(1+sin(2x))sin4(x+π4)=14(1+sin2(2x)+2sin(2x))sin4(x)+2sin(2x)+sin2(2x)4=0sin(x)(4sin3(x)+4cos(x)+4sin(x)cos2(x))=04sin(x)(sin(x)+cos(x))=042sin(x)sin(x+π4)=0x{0,π,2π,3π4,7π4}

Answered by TANMAY PANACEA. last updated on 04/Apr/20

(((1−cos2x)/2))^2 +(((1−cos((π/2)+2x))/2))^2 =(1/4)  ((1−2cos2x+cos^2 2x)/4)+(((1+sin2x)/2))^2 =(1/4)  1−2cos2x+cos^2 2x+1+2sin2x+sin^2 2x=1  3−2cos2x+2sin2x=1  1−cos2x+sin2x=0  1=(cos2x−sin2x)^2   1=1−sin4x  sin4x=0=sin0→x=0

(1cos2x2)2+(1cos(π2+2x)2)2=1412cos2x+cos22x4+(1+sin2x2)2=1412cos2x+cos22x+1+2sin2x+sin22x=132cos2x+2sin2x=11cos2x+sin2x=01=(cos2xsin2x)21=1sin4xsin4x=0=sin0x=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com