All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 87488 by jagoll last updated on 04/Apr/20
sin4x+sin4(x+π4)=14x∈[0,2π]
Commented by john santu last updated on 05/Apr/20
(2sin2x)2+(2sin2(x+π4))2=1(1−cos2x)2+(1−cos(2x+π2))2=1(1−cos2x)2+(1+sin2x)2=11−2cos2x+cos22x+1+2sin2x+sin22x=12sin2x−2cos2x=−2cos2x−sin2x=1cos(2x+π4)=12=cosπ4⇒2x=−π4±π4+2πn,n∈Z⇒x=−π8±π8+πn(+)⇒x=0,π,2π(−)⇒x=−π4+πn;x=3π4,7π4
Answered by mind is power last updated on 04/Apr/20
sin(x+π4)=22(sin(x)+cos(x))sin2(x+π4)=12(1+sin(2x))sin4(x+π4)=14(1+sin2(2x)+2sin(2x))⇔sin4(x)+2sin(2x)+sin2(2x)4=0⇔sin(x)(4sin3(x)+4cos(x)+4sin(x)cos2(x))=0⇔4sin(x)(sin(x)+cos(x))=0⇒42sin(x)sin(x+π4)=0x∈{0,π,2π,3π4,7π4}
Answered by TANMAY PANACEA. last updated on 04/Apr/20
(1−cos2x2)2+(1−cos(π2+2x)2)2=141−2cos2x+cos22x4+(1+sin2x2)2=141−2cos2x+cos22x+1+2sin2x+sin22x=13−2cos2x+2sin2x=11−cos2x+sin2x=01=(cos2x−sin2x)21=1−sin4xsin4x=0=sin0→x=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com