Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 87409 by redmiiuser last updated on 04/Apr/20

∫(sinx)^(1/5) dx

(sinx)15dx

Commented by Prithwish Sen 1 last updated on 04/Apr/20

∫((sin^(1/5) x cosx)/(cosx)) dx   put sinx = u^5   cosxdx = 5u^4 du  =∫((5u^5 du)/(√(1−u^(10)  )))  =5∫u^5 (1−u^(10) )^(−(1/2)) dx   ∣x∣≤1  now apply the formula of the series...

sin15xcosxcosxdxputsinx=u5cosxdx=5u4du=5u5du1u10=5u5(1u10)12dxx∣⩽1nowapplytheformulaoftheseries...

Commented by redmiiuser last updated on 04/Apr/20

Yes mister you are  correct.God bless you!

Yesmisteryouarecorrect.Godblessyou!

Answered by mind is power last updated on 04/Apr/20

=∫(t^(1/5) /(√(1−t^2 )))dx,t=sin(x)  (1/(√(1−t^2 )))=Σ_(n≥0) (((2n)!)/(2^(2n) .(n!)^2 ))t^(2n)   =∫Σ_(n≥0) (((2n)!)/(2^(2n) (n!)^2 ))t^(2n+(1/5)) dt=Σ_(n≥0) (((2n)!5t^(2n+(6/5)) )/(2^(2n) (n!)^2 (10n+6)))  =(1/2)t^(6/5) Σ_(n≥0) (((2n)!)/(2^(2n) (n!)^2 (n+(3/5))))=(t^(6/5) /2)((5/3)+Σ_(n≥1) (((2n)!x^(2n) )/(2^(2n) (n!)^2 (n+(3/5)))))  =((5t^(6/5) )/6)(1+Σ_(n≥1) ((2^n n!.Π_(k=0) ^(n−1) (2k+1).(3/5))/(2^(2n) (n!)^2 .(n+(3/5)))).t^(2n) )  =((5t^(6/5) )/6)(1+Σ_(n≥1) ((Π_(k=0) ^(n−1) ((1/2)+k).Π_(k=0) ^(n−1) ((3/5)+k))/(Π_(k=0) ^(n−1) ((8/5)+k))).(((t^2 )^n )/(n!)))  =(5/6)t^(6/5)    _2 F_1 ((1/2),(3/5);(8/5);t^2 )+c  =(5/6)sin(x)^(6/5)   _2 F_1 ((1/2),(3/5);(8/5);sin^2 (x))+c

=t151t2dx,t=sin(x)11t2=n0(2n)!22n.(n!)2t2n=n0(2n)!22n(n!)2t2n+15dt=n0(2n)!5t2n+6522n(n!)2(10n+6)=12t65n0(2n)!22n(n!)2(n+35)=t652(53+n1(2n)!x2n22n(n!)2(n+35))=5t656(1+n12nn!.n1k=0(2k+1).3522n(n!)2.(n+35).t2n)=5t656(1+n1n1k=0(12+k).n1k=0(35+k)n1k=0(85+k).(t2)nn!)=56t652F1(12,35;85;t2)+c=56sin(x)652F1(12,35;85;sin2(x))+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com