All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 87409 by redmiiuser last updated on 04/Apr/20
∫(sinx)15dx
Commented by Prithwish Sen 1 last updated on 04/Apr/20
∫sin15xcosxcosxdxputsinx=u5cosxdx=5u4du=∫5u5du1−u10=5∫u5(1−u10)−12dx∣x∣⩽1nowapplytheformulaoftheseries...
Commented by redmiiuser last updated on 04/Apr/20
Yesmisteryouarecorrect.Godblessyou!
Answered by mind is power last updated on 04/Apr/20
=∫t151−t2dx,t=sin(x)11−t2=∑n⩾0(2n)!22n.(n!)2t2n=∫∑n⩾0(2n)!22n(n!)2t2n+15dt=∑n⩾0(2n)!5t2n+6522n(n!)2(10n+6)=12t65∑n⩾0(2n)!22n(n!)2(n+35)=t652(53+∑n⩾1(2n)!x2n22n(n!)2(n+35))=5t656(1+∑n⩾12nn!.∏n−1k=0(2k+1).3522n(n!)2.(n+35).t2n)=5t656(1+∑n⩾1∏n−1k=0(12+k).∏n−1k=0(35+k)∏n−1k=0(85+k).(t2)nn!)=56t652F1(12,35;85;t2)+c=56sin(x)652F1(12,35;85;sin2(x))+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com