Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114196 by mathdave last updated on 17/Sep/20

solve  ∫_0 ^(π/4) ln(1+sinx)dx

solve0π4ln(1+sinx)dx

Commented by Dwaipayan Shikari last updated on 20/Sep/20

∫_0 ^(π/4) (−1)^n Σ_(n=1) ^∞ ((sin^n x)/n)  Σ^∞ (−1)^n ∫_0 ^(π/4) (((e^(ix) −e^(−ix) )^n )/(2^n i^n n))dx  Σ_(n=1) ^∞ (−1)^n (e^(inx) /(2^n .i^n n))∫_0 ^(π/4) (1−e^(−2ix) )^n   Σ_(n=1) ^∞ (−1)^n (1/n) (e^(inx) /(2^n i^n ))((π/4)+(n/(2i))e^(−2ix) +.....)

0π4(1)nn=1sinnxn(1)n0π4(eixeix)n2ninndxn=1(1)neinx2n.inn0π4(1e2ix)nn=1(1)n1neinx2nin(π4+n2ie2ix+.....)

Answered by mathmax by abdo last updated on 19/Sep/20

let take a try with this integral  I =∫_0 ^(π/4) ln(1+cos((π/2)−x))dx =∫_0 ^(π/4) ln(2cos^2 ((π/4)−(x/2)))dx  =(π/4)ln(2)+2 ∫_0 ^(π/4)  ln(cos((π/4)−(x/2)))dx  changement (π/4)−(x/2)=t  give ∫_0 ^(π/4)  ln(cos((π/4)−(x/2)))dx =∫_(π/4) ^(π/8) ln(cost)(−2dt)  =2 ∫_(π/8) ^(π/4)  ln(cost)dt  =2{ [t ln(cost)]_(π/8) ^(π/4) −∫_(π/8) ^(π/4)  t×((−sint)/(cost)) dt}  =2{(π/4)ln((1/(√2)))−(π/8)ln(((√(2+(√2)))/2)) } +2 ∫_(π/8) ^(π/4)  t tant dt  ∫_(π/8) ^(π/4)  t tant dt =_(tant =u)   ∫_((√2)−1) ^1  ((u arctanu)/(1+u^2 )) du  =[(1/2)ln(1+u^2 )arctanu]_((√2)−1) ^1 −∫_((√2)−1) ^1  (1/2)ln(1+u^2 )×(du/(1+u^2 ))  =(1/2)ln(2)(π/4)−(1/2)ln(4−2(√2))×(π/8)−(1/2) ∫_((√2)−1) ^1  ((ln(1+u^2 ))/(1+u^2 )) du  but ∫_((√2)−1) ^1  ((ln(1+u^2 ))/(1+u^2 ))du =∫_0 ^1  ((ln(1+u^2 ))/(1+u^2 ))du−∫_0 ^((√2)−1)  ((ln(1+u^2 ))/(1+u^2 ))du  ∫_0 ^1  ((ln(1+u^2 ))/(1+u^2 ))du =_(u=tanθ)   ∫_0 ^(π/4)  ((ln((1/(cos^2 θ))))/(1+tan^2 θ))(1+tan^2 θ)dθ  =−2∫_0 ^(π/4) ln(cosθ)(the value of this integral is known see the  platform i dont remember its value)  ∫_0 ^((√2)−1)    ((ln(1+u^2 ))/(1+u^2 ))du =∫_0 ^((√2)−1) ln(1+u^2 )Σ_(n=0) ^∞ (−1)^n  u^(2n)  du  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^((√2)−1) u^(2n)  ln(1+u^2 )du....be continued...

lettakeatrywiththisintegralI=0π4ln(1+cos(π2x))dx=0π4ln(2cos2(π4x2))dx=π4ln(2)+20π4ln(cos(π4x2))dxchangementπ4x2=tgive0π4ln(cos(π4x2))dx=π4π8ln(cost)(2dt)=2π8π4ln(cost)dt=2{[tln(cost)]π8π4π8π4t×sintcostdt}=2{π4ln(12)π8ln(2+22)}+2π8π4ttantdtπ8π4ttantdt=tant=u211uarctanu1+u2du=[12ln(1+u2)arctanu]21121112ln(1+u2)×du1+u2=12ln(2)π412ln(422)×π812211ln(1+u2)1+u2dubut211ln(1+u2)1+u2du=01ln(1+u2)1+u2du021ln(1+u2)1+u2du01ln(1+u2)1+u2du=u=tanθ0π4ln(1cos2θ)1+tan2θ(1+tan2θ)dθ=20π4ln(cosθ)(thevalueofthisintegralisknownseetheplatformidontrememberitsvalue)021ln(1+u2)1+u2du=021ln(1+u2)n=0(1)nu2ndu=n=0(1)n021u2nln(1+u2)du....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com