All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 114196 by mathdave last updated on 17/Sep/20
solve∫0π4ln(1+sinx)dx
Commented by Dwaipayan Shikari last updated on 20/Sep/20
∫0π4(−1)n∑∞n=1sinnxn∑∞(−1)n∫0π4(eix−e−ix)n2ninndx∑∞n=1(−1)neinx2n.inn∫0π4(1−e−2ix)n∑∞n=1(−1)n1neinx2nin(π4+n2ie−2ix+.....)
Answered by mathmax by abdo last updated on 19/Sep/20
lettakeatrywiththisintegralI=∫0π4ln(1+cos(π2−x))dx=∫0π4ln(2cos2(π4−x2))dx=π4ln(2)+2∫0π4ln(cos(π4−x2))dxchangementπ4−x2=tgive∫0π4ln(cos(π4−x2))dx=∫π4π8ln(cost)(−2dt)=2∫π8π4ln(cost)dt=2{[tln(cost)]π8π4−∫π8π4t×−sintcostdt}=2{π4ln(12)−π8ln(2+22)}+2∫π8π4ttantdt∫π8π4ttantdt=tant=u∫2−11uarctanu1+u2du=[12ln(1+u2)arctanu]2−11−∫2−1112ln(1+u2)×du1+u2=12ln(2)π4−12ln(4−22)×π8−12∫2−11ln(1+u2)1+u2dubut∫2−11ln(1+u2)1+u2du=∫01ln(1+u2)1+u2du−∫02−1ln(1+u2)1+u2du∫01ln(1+u2)1+u2du=u=tanθ∫0π4ln(1cos2θ)1+tan2θ(1+tan2θ)dθ=−2∫0π4ln(cosθ)(thevalueofthisintegralisknownseetheplatformidontrememberitsvalue)∫02−1ln(1+u2)1+u2du=∫02−1ln(1+u2)∑n=0∞(−1)nu2ndu=∑n=0∞(−1)n∫02−1u2nln(1+u2)du....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com