All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33823 by 33 last updated on 25/Apr/18
solve:I=∫π0(r−Rcosθ)sinθ(R2+r2−2Rrcosθ)3/2dθforr<Randr>Rrespectively.
Answered by MJS last updated on 26/Apr/18
∫u′v=uv−∫uv′u′=sinθ(r2+R2−2rRcosθ)32;v=r−Rcosθu=−1rR(r2+R2−2rRcosθ)12;v′=Rsinθ[∫sinθ(r2+R2−2rRcosθ)32dθ=[t=r2+R2−2rRcosθ→dx=dt2rRsinθ]=12rR∫1t32dt=−1rRt12]uv=−r−RcosθrR(r2+R2−2rRcosθ)12−∫uv′=∫sinθr(r2+R2−2rRcosθ)12=[withthesamesubstitutionasabove]=(r2+R2−2rRcosθ)12r2R∫(r−Rcosθ)sinθ(r2+R2−2rRcosθ)32==−r−RcosθrR(r2+R2−2rRcosθ)12+(r2+R2−2rRcosθ)12r2R+C==R−rcosθr2r2+R2−2rRcosθ+C=F(θ)F(π)−F(0)=R+rr2∣R+r∣−R−rr2∣R−r∣r,R>0r<R⇒F(π)−F(0)=0r>R⇒F(π)−F(0)=2r2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com