Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 175369 by infinityaction last updated on 28/Aug/22

  solve for x     log_(∣sinx∣ ) (x^2 −8x+23) > (3/(log_2 ∣sinx∣ ))

solveforxlogsinx(x28x+23)>3log2sinx

Answered by floor(10²Eta[1]) last updated on 28/Aug/22

((log(x^2 −8x+23))/(log∣sinx∣))>((3log2)/(log∣sinx∣))  log(x^2 −8x+23)>log8  x^2 −8x+23>8⇒x^2 −8x+15>0  x<3 or x>5  sinx≠0⇒x≠kπ, k∈Z  log∣sinx∣≠0⇒∣sinx∣≠1⇒x=(((2n+1)π)/2)  ⇒S={x∈R−{kπ, (((2n+1)π)/2)}, k,n∈Z∣x∈(−∞,3)∪(5,∞)}

log(x28x+23)logsinx>3log2logsinxlog(x28x+23)>log8x28x+23>8x28x+15>0x<3orx>5sinx0xkπ,kZlogsinx∣≠0⇒∣sinx∣≠1x=(2n+1)π2S={xR{kπ,(2n+1)π2},k,nZx(,3)(5,)}

Commented by infinityaction last updated on 28/Aug/22

check your solution

checkyoursolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com