Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110246 by Her_Majesty last updated on 28/Aug/20

solve for z∈C: (a+bi)^z =b+ai

solveforzC:(a+bi)z=b+ai

Answered by mr W last updated on 28/Aug/20

θ=tan^(−1) (b/a)  zln (a+bi)=ln (b+ai)  z(ln (√(a^2 +b^2 ))+iθ)=ln (√(a^2 +b^2 ))+i((π/2)−θ)  z=((ln (√(a^2 +b^2 ))+i((π/2)−θ))/(ln (√(a^2 +b^2 ))+iθ))  z=(([ln (√(a^2 +b^2 ))+i((π/2)−θ)][ln (√(a^2 +b^2 ))+iθ])/(ln^2  (√(a^2 +b^2 ))+θ^2 ))  z=((ln^2  (√(a^2 +b^2 ))+((π/2)−θ)θ+(π/2)ln (√(a^2 +b^2 ))i)/(ln^2  (√(a^2 +b^2 ))+θ^2 ))

θ=tan1bazln(a+bi)=ln(b+ai)z(lna2+b2+iθ)=lna2+b2+i(π2θ)z=lna2+b2+i(π2θ)lna2+b2+iθz=[lna2+b2+i(π2θ)][lna2+b2+iθ]ln2a2+b2+θ2z=ln2a2+b2+(π2θ)θ+π2lna2+b2iln2a2+b2+θ2

Commented by Her_Majesty last updated on 28/Aug/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com