All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 31972 by abdo imad last updated on 17/Mar/18
solveinside]−1,1[thed.e.1−x2y′+y=e−2x.
Commented by math khazana by abdo last updated on 15/Aug/18
he⇒1−x2y′+y=0⇒1−x2y′=−y⇒y′y=−11−x2⇒∫y′ydx=arccosx+α⇒ln∣y∣=arccosx+α⇒y=kearccosxmvcmethodgivey′=k′earccosx−k1−x2earccosx(e)⇒1−x2{k′earccosx−k1−x2}earccosx+kearccosx=e−2x⇒k′1−x2earccosx=e−2x⇒k′=e−2x1−x2earccosx=e−2x−arccosx1−x2⇒k(x)=∫e−2x−arccosx1−x2dx+c⇒y(x)=earcosx{∫.xe−2t−arccost1−t2+c}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com