Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 17985 by tawa tawa last updated on 13/Jul/17

solve simultaneously.  x^3  + y^3  = 35  x^4  + y^4  = 97

solvesimultaneously.x3+y3=35x4+y4=97

Answered by mrW1 last updated on 13/Jul/17

let u=x+y and xy=v  (x+y)(x^2 +y^2 +2xy−3xy)=35  (x+y)[(x+y)^2 −3xy]=35  u(u^2 −3v)=35  v=((u^2 −((35)/u))/3)=((u^3 −35)/(3u))    (x^2 )^2 +(y^2 )^2 +2x^2 y^2 −2x^2 y^2 =97  (x^2 +y^2 )^2 −2x^2 y^2 =97  (x^2 +y^2 +2xy−2xy)^2 −2x^2 y^2 =97  ((x+y)^2 −2xy)^2 −2x^2 y^2 =97  (u^2 −2v)^2 −2v^2 =97  (u^2 −2((u^3 −35)/(3u)))^2 −2(((u^3 −35)/(3u)))^2 =97  (u^3 +70)^2 −2(u^3 −35)^2 =873u^2   u^6 +140u^3 +4900−2u^6 +140u^3 −2450=873u^2   u^6 −280u^3 +873u^2 −2450=0  ⇒u=−1.391 or 5  ⇒v=9.0322 or 6    x+y=u  xy=v  x^2 +y^2 −2xy+4xy=u^2   (x−y)^2 =u^2 −4v  x−y=±(√(u^2 −4v))  ⇒x=((u±(√(u^2 −4v)))/2)  ⇒y=((u∓(√(u^2 −4v)))/2)    with u=−1.391 and v=9.0322  there is no real solution since  u^2 −4v<0    with u=5 and v=6  ⇒x+y=5  ⇒x−y=±(√(25−24))=±1  ⇒x=((5±1)/2)=3,2  ⇒y=((5∓1)/2)=2,3    ⇒(x,y)=(3,2) or (2,3)

letu=x+yandxy=v(x+y)(x2+y2+2xy3xy)=35(x+y)[(x+y)23xy]=35u(u23v)=35v=u235u3=u3353u(x2)2+(y2)2+2x2y22x2y2=97(x2+y2)22x2y2=97(x2+y2+2xy2xy)22x2y2=97((x+y)22xy)22x2y2=97(u22v)22v2=97(u22u3353u)22(u3353u)2=97(u3+70)22(u335)2=873u2u6+140u3+49002u6+140u32450=873u2u6280u3+873u22450=0u=1.391or5v=9.0322or6x+y=uxy=vx2+y22xy+4xy=u2(xy)2=u24vxy=±u24vx=u±u24v2y=uu24v2withu=1.391andv=9.0322thereisnorealsolutionsinceu24v<0withu=5andv=6x+y=5xy=±2524=±1x=5±12=3,2y=512=2,3(x,y)=(3,2)or(2,3)

Commented by tawa tawa last updated on 13/Jul/17

God bless you sir. i really appreciate.

Godblessyousir.ireallyappreciate.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com