All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 74870 by vishalbhardwaj last updated on 02/Dec/19
solvewithexplanationlimx→0−[xsinx],where[]representsgreatestinteger
Commented by mathmax by abdo last updated on 02/Dec/19
wehavesinx=∑n=0∞(−1)nx2n+1(2n+1)!withradiusR=+∞sinx=x−x33!+x55!−....⇒x−x36⩽sinx⩽x(wecantake0⩽x⩽π2)1−x26⩽sinxx⩽1⇒[1−x26]⩽[sinxx]⩽1⇒1+[−x22]⩽[sinxx]⩽1⇒limx→0[sinxx]=1
Answered by mind is power last updated on 02/Dec/19
xsin(x)>0whex∈]−π2,0[[xsin(x)]⩽xsin(x)...Ex<sin(x),forallx∈]−π2,0[proofcos(t)⩽1f(x)=x−sin(x)⇒f′(x)=1−cos(x)⩾0fincreasef(0)=0⇒x−sin(x)<0∀x∈[−π2,0[⇒x<sin(x)⇒xsin(x)⩾1,∴sin(x)⩽0∴⇒[xsin(x)]⩾1⇒E⇔1⩽[xsin(x)]⩽xsin(x)limx→0xsin(x)=limx→01cos(x)=1hopitaksRulls⇒limx→0[xsin(x)]=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com