Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 198809 by dimentri last updated on 24/Oct/23

     sum of roots    log _3 x + log _3 (2,5) + log _x 9 = 3+ log _x 5

sumofrootslog3x+log3(2,5)+logx9=3+logx5

Answered by a.lgnaoui last updated on 24/Oct/23

((logx)/(log3))+((log(2,5))/(log3))+((log9)/(logx))=3+((log5)/(logx))  (logx)^2 +logx.log(2,5)+2(log3)^2   =3log3logx+log3.log5  posons  logx=z  z^2 +z[log(2,5)−3log3]+log3(2log3−log5)=0    △=[log(2,5)−3log3]^2 −4log3(2log3−log5)    log(2,5)=log(((25)/(10)))=log25−1=2log5−1  z^2 +z(2log5−3log3−1)+log3(2log3−log5)=0    △=(2log5−3log3−1)^2 −8(log3)^2 +           4log3.log5  =1+(log3)^2 −16log3log5+6log3     +4(log5)^2 −4log5  =(2log5−1)^2 +(log3−8log5)^2   =+6log3−64(log5)^2     =−6log5−1)(10log5−1)+      △=6log3−(10log5−1)(6log5+1)+        (8log5−log3)^2     z=(((3log3+1−2log5)±(√(6log3−(6log5+1)(10log5−1)+(8log5−log3)^2 )))/2)             x=e^((3log3−2log5+1)/2) ×e^(±(√(6log3+(8log5−3)^2 −6(log5−1)(6kog5+1))) /2)     ⇒Sum   of roots is                r=e^((3/2)log3−log5+(1/2))

logxlog3+log(2,5)log3+log9logx=3+log5logx(logx)2+logx.log(2,5)+2(log3)2=3log3logx+log3.log5posonslogx=zz2+z[log(2,5)3log3]+log3(2log3log5)=0=[log(2,5)3log3]24log3(2log3log5)log(2,5)=log(2510)=log251=2log51z2+z(2log53log31)+log3(2log3log5)=0=(2log53log31)28(log3)2+4log3.log5=1+(log3)216log3log5+6log3+4(log5)24log5=(2log51)2+(log38log5)2=+6log364(log5)2=6log51)(10log51)+=6log3(10log51)(6log5+1)+(8log5log3)2z=(3log3+12log5)±6log3(6log5+1)(10log51)+(8log5log3)22x=e(3log32log5+1)/2×e±6log3+(8log53)26(log51)(6kog5+1)/2Sumofrootsisr=e32log3log5+12

Commented by mr W last updated on 24/Oct/23

wrong!  x=e^(a±b)   ⇒Σx=e^a (e^b +e^(−b) )≠e^a

wrong!x=ea±bΣx=ea(eb+eb)ea

Commented by a.lgnaoui last updated on 24/Oct/23

yes thanks  i use logaritme base 10   i think that my answer wil be exact   if the we change log by  ln in the   given equation.(c′ est un piege!)

yesthanksiuselogaritmebase10ithinkthatmyanswerwilbeexactifthewechangelogbylninthegivenequation.(cestunpiege!)

Commented by mr W last updated on 24/Oct/23

oui!

oui!

Answered by mr W last updated on 24/Oct/23

 log _3 x + log _3 (2,5)−log_3  3^3 = log _x 5−log_x  9  log_3  ((2.5x)/(27))=log_x  (5/9)  ((ln x+ln (((2.5)/(27))))/(log 3))=((ln (5/9))/(ln x))  (ln x)(ln x+ln ((2.5)/(27)))=(ln 3)(ln (5/9))  let t=ln x  t^2 +(ln ((2.5)/(27)))t−(ln 3)(ln (5/9))=0  t_(1,2) =(1/2)[−ln ((2.5)/(27))±(√((ln ((2.5)/(27)))^2 +4(ln 3)(ln (5/9))))]  t_1 +t_2 =−ln ((2.5)/(27))=ln ((54)/5)  x_(1,2) =e^t_(1,2)    sum of roots:  x_1 +x_2 =e^t_1  +e^t_2  =....    product of roots:  x_1 x_2 =e^t_1  e^t_2  =e^(t_1 +t_2 ) =e^(ln ((54)/5)) =((54)/5)

log3x+log3(2,5)log333=logx5logx9log32.5x27=logx59lnx+ln(2.527)log3=ln59lnx(lnx)(lnx+ln2.527)=(ln3)(ln59)lett=lnxt2+(ln2.527)t(ln3)(ln59)=0t1,2=12[ln2.527±(ln2.527)2+4(ln3)(ln59)]t1+t2=ln2.527=ln545x1,2=et1,2sumofroots:x1+x2=et1+et2=....productofroots:x1x2=et1et2=et1+t2=eln545=545

Terms of Service

Privacy Policy

Contact: info@tinkutara.com