Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68141 by MJS last updated on 06/Sep/19

the 2 formulas for solving ∫(dx/(x^3 +px+q)) with  “nasty” solutions of x^3 +px+q=0 with p, q ∈R    case 1  D=(p^3 /(27))+(q^2 /4)>0 ⇒ x^3 +px+q=0 has got 1 real  and 2 conjugated complex solutions  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=((−(q/2)−p(√((p^3 /(27))+(q^2 /4)))))^(1/3)   x_1 =u+v  x_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v  x_3 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v  α=u+v∧β=((√3)/2)(u−v) ⇔ u=(α/2)+(β/(√3))∧v=(α/2)−(β/(√3))  x_1 =α  x_2 =−(α/2)+βi  x_3 =−(α/2)−βi  ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x^2 +αx+((α^2 +4β^2 )/4))))=  =(1/(9α^2 +4β^2 ))(∫(dx/((x−α)))−∫((x+2α)/(x^2 +αx+((α^2 +4β^2 )/4)))dx)=  =(1/(9α^2 +4β^2 ))(ln ∣x−α∣ −(1/2)ln ((2x+α)^2 +4β^2 ) −((3α)/(2β))arctan ((2x+α)/(2β))) +C  ...now calculate the constants    case 2  D=(p^3 /(27))+(q^2 /4)<0 ⇒ x^3 +px+q=0 has got 3 real solutions  x_k =(2/3)(√(−3p)) sin (((2π)/3)k+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with k=0, 1, 2  let x_1 =α, x_2 =β, x_3 =γ  ∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x−β)(x−γ)))=  =(1/((α−β)(α−γ)))∫(dx/(x−α))+(1/((β−α)(β−γ)))∫(dx/(x−β))+(1/((γ−α)(γ−β)))∫(dx/(x−γ))=  =((ln ∣x−α∣)/((α−β)(α−γ)))+((ln ∣x−β∣)/((β−α)(β−γ)))+((ln ∣x−γ∣)/((γ−α)(γ−β)))+C  ...now calculate the constants

the2formulasforsolvingdxx3+px+qwithnastysolutionsofx3+px+q=0withp,qRcase1D=p327+q24>0x3+px+q=0hasgot1realand2conjugatedcomplexsolutionsu=q2+p327+q243v=q2pp327+q243x1=u+vx2=(12+32i)u+(1232i)vx3=(1232i)u+(12+32i)vα=u+vβ=32(uv)u=α2+β3v=α2β3x1=αx2=α2+βix3=α2βidxx3+px+q=dx(xα)(x2+αx+α2+4β24)==19α2+4β2(dx(xα)x+2αx2+αx+α2+4β24dx)==19α2+4β2(lnxα12ln((2x+α)2+4β2)3α2βarctan2x+α2β)+C...nowcalculatetheconstantscase2D=p327+q24<0x3+px+q=0hasgot3realsolutionsxk=233psin(2π3k+13arcsin33q2p3)withk=0,1,2letx1=α,x2=β,x3=γdxx3+px+q=dx(xα)(xβ)(xγ)==1(αβ)(αγ)dxxα+1(βα)(βγ)dxxβ+1(γα)(γβ)dxxγ==lnxα(αβ)(αγ)+lnxβ(βα)(βγ)+lnxγ(γα)(γβ)+C...nowcalculatetheconstants

Commented by mind is power last updated on 06/Sep/19

thank you for this worck!

thankyouforthisworck!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com