All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140896 by bramlexs22 last updated on 14/May/21
thefunctionfwithvariablexsatisfiestheequationx2f′(x)+2xf(x)=arctanxfor0<arctanx<π2andf(1)=π4.findf(x).
Answered by EDWIN88 last updated on 15/May/21
letg(x)=x2f(x),diffwrtxgiveg′(x)=x2f′(x)+2xf(x)sothatg′(x)=arctanxintegrationbypartg(x)=∫arctanxdx=xarctanx−12ln(1+x2)+ctheconditiong(1)=f(1)=π4⇒π4=arctan1−12ln(2)+c⇒c=ln2∴f(x)=g(x)x2=arctanxx−ln1+x2x2+ln2x2
Answered by mathmax by abdo last updated on 14/May/21
f(x)=ye⇒x2y′+2xy=arctanxandy(1)=π4h→xy′+2y=0⇒xy′=−2y⇒y′y=−2x⇒ln∣y∣=−2log∣x∣+c⇒y=kx2mvcmethod→y′=k′x2+k(−2xx4)=k′x2−2kx3e⇒k′−2kx+2kx=arctanx⇒k=∫arctanxdx=xarctanx−∫x1+x2dx=xarctan(x)−12log(1+x2)+C⇒y(x)=1x2(xarctan(x)−12log(1+x2)+C)=arctan(x)x−12x2log(1+x2)+cx2=f(x)f(1)=π4⇒π4−12log2+C=π4⇒C=12log2⇒f(x)=arctan(x)x−12x2log(1+x2)+log22x2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com