Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83590 by Tony Lin last updated on 04/Mar/20

transform the ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 to  the polar equation r= ((a(1−e^2 ))/(1+ecosθ))  a: semimajor axis  e: eccentricity

transformtheellipsex2a2+y2b2=1tothepolarequationr=a(1e2)1+ecosθa:semimajoraxise:eccentricity

Commented by mr W last updated on 04/Mar/20

(((x+((a+b)/2))^2 )/a^2 )+(y^2 /b^2 )=1 ⇔ r= ((a(1−e^2 ))/(1+ecosθ))

(x+a+b2)2a2+y2b2=1r=a(1e2)1+ecosθ

Commented by Tony Lin last updated on 04/Mar/20

(x^2 /a^2 )+(y^2 /b^2 )=1  b^2 x^2 +a^2 y^2 =a^2 b^2   (a^2 −c^2 )x^2 +a^2 y^2 =a^2 (a^2 −c^2 )  a^2 r^2 −c^2 x^2 =a^4 −c^2 a^2   e^2 =((c/a))^2 =((r^2 −a^2 )/(x^2 −a^2 ))  e^2 =((1−(a^2 /r^2 ))/(cos^2 θ−(a^2 /r^2 )))  r^2 e^2 cos^2 θ−e^2 a^2 =r^2 −a^2   r^2 (e^2 cos^2 θ−1)=a^2 (e^2 −1)  r=±a(√((1−e^2 )/((1−ecosθ)(1+ecosθ))))  Am I wrong?

x2a2+y2b2=1b2x2+a2y2=a2b2(a2c2)x2+a2y2=a2(a2c2)a2r2c2x2=a4c2a2e2=(ca)2=r2a2x2a2e2=1a2r2cos2θa2r2r2e2cos2θe2a2=r2a2r2(e2cos2θ1)=a2(e21)r=±a1e2(1ecosθ)(1+ecosθ)AmIwrong?

Commented by mr W last updated on 04/Mar/20

correct!

correct!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com