Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 40366 by mondodotto@gmail.com last updated on 20/Jul/18

use newton raphson method  to approximate the positive root  x^2 −1=0 correct to 4 decimal places  perform 3 iteration only  setting with x=2

usenewtonraphsonmethodtoapproximatethepositiverootx21=0correctto4decimalplacesperform3iterationonlysettingwithx=2

Commented by math khazana by abdo last updated on 20/Jul/18

let p(x)=x^2 −1 and x_0 =2 ⇒  x_(n+1) =x_n  −((p(x_n ))/(p^′ (x_n ))) ⇒x_1 =x_0 −((p(x_0 ))/(p^′ (x_0 )))  =2−(3/4) =(5/4)  x_2 =x_1 −((p(x_1 ))/(p^′ (x_1 ))) =(5/4) −((((5/4))^2 −1)/(2.(5/4)))=(5/4) −(9/(16.(5/2)))  =(5/4) −(9/(40)) = ((41)/(40))  x_3 =x_2  −((p(x_2 ))/(p^′ (x_2 ))) = ((41)/(40)) −(((((41)/(40)))^2 −1)/(2.((41)/(40))))  =((41)/(40)) −((41^2 −40^2 )/(40^2  .((41)/(20)))) =((41)/(40)) −((81)/(40^2 )) .((20)/(41)) =((41)/(40)) −((1620)/(41.40^2 ))  =((41)/(40)) −((1620)/(41.1600)) =((41)/(40)) −((162)/(41.160)) =....

letp(x)=x21andx0=2xn+1=xnp(xn)p(xn)x1=x0p(x0)p(x0)=234=54x2=x1p(x1)p(x1)=54(54)212.54=54916.52=54940=4140x3=x2p(x2)p(x2)=4140(4140)212.4140=4140412402402.4120=414081402.2041=4140162041.402=4140162041.1600=414016241.160=....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com