All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33979 by abdo imad last updated on 28/Apr/18
wegivefort>0∫0∞sinxxe−txdx=π2−arctantusethisresulttofindthevalueof∫0∞(1−e−x)sinxx2dx.
Commented by abdo mathsup 649 cc last updated on 03/May/18
weknowthat∫0∞sinxxe−txdx=π2−arctant⇒∫01(π2−arctant)dt=∫01(∫0∞sinxxe−txdx)=∫0∞(∫01e−txdt)sinxxdx(byfubini)=∫0∞([−1xe−tx]t=0t=1)sinxxdx=∫0∞1x2(1−e−x)sinxdxbut∫01(π2−arctant)dt=π2−∫01arctantdtbyparts∫01arctantdt=[tarctant]01−∫10t1+t2dt=π4−12[ln(1+t2)]01=π4−12ln(2)⇒∫0∞(1−e−x)sinxx2dx=π4+12ln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com