Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110608 by Engr_Jidda last updated on 29/Aug/20

(√x) +1=0  Solution  (√(x )) = −1  recalled that ϱ^(iΠ) = −1  (√x) =ϱ^(iΠ)   x=(ϱ^(iΠ) )^2   ⇒ x=ϱ^(2iΠ)   or x= 2cosΠ+isinΠ  x has no real value!

x+1=0Solutionx=1recalledthatϱiΠ=1x=ϱiΠx=(ϱiΠ)2x=ϱ2iΠorx=2cosΠ+isinΠxhasnorealvalue!

Commented by Her_Majesty last updated on 29/Aug/20

you′re wrong  x=e^(2iπ)  ⇔ x=cos2π +isin2π=1  anyway you′re wrong because we are not  allowed to square both sides of any equation;  this leads to false solutions:  x=3  x^2 =9 ⇒ x=±3    in our case we have to set ranges first  if x∈C ⇒ x=re^(iθ)  with r∈R∧r≥0 and  θ∈R∧ { ((−π≤θ<π)),((0≤θ<2π)) :} (both are in use)  (√x)=−1  (√(re^(iθ) ))=−1  (√r)e^(iθ/2) =−1  but −1=e^(±iπ)   (√r)e^(iθ/2) =e^(±iπ)  ⇔ r=1∧θ/2=±π ⇔ θ=±2π  but θ is not in our range ⇒ we have to  subtract/add 2π ⇒ θ=0  ⇒ x=(√x)=e^0 =1≠−1 ⇒ no solution at all

yourewrongx=e2iπx=cos2π+isin2π=1anywayyourewrongbecausewearenotallowedtosquarebothsidesofanyequation;thisleadstofalsesolutions:x=3x2=9x=±3inourcasewehavetosetrangesfirstifxCx=reiθwithrRr0andθR{πθ<π0θ<2π(bothareinuse)x=1reiθ=1reiθ/2=1but1=e±iπreiθ/2=e±iπr=1θ/2=±πθ=±2πbutθisnotinourrangewehavetosubtract/add2πθ=0x=x=e0=11nosolutionatall

Terms of Service

Privacy Policy

Contact: info@tinkutara.com