Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154195 by rexford last updated on 15/Sep/21

∫((x+sinx)/(1+cosx))dx      please,help me

x+sinx1+cosxdxplease,helpme

Answered by qaz last updated on 15/Sep/21

∵ (((sin x)/(1+cos x)))′=(1/(1+cos x))  ∴∫((x+sin x)/(1+cos x))dx  =∫(x/(1+cos x))dx+∫((sin x)/(1+cos x))dx  =∫xd(((sin x)/(1+cos x)))+∫((sin x)/(1+cos x))dx  =((xsin x)/(1+cos x))+C

(sinx1+cosx)=11+cosxx+sinx1+cosxdx=x1+cosxdx+sinx1+cosxdx=xd(sinx1+cosx)+sinx1+cosxdx=xsinx1+cosx+C

Commented by qaz last updated on 15/Sep/21

∫((x−sin x)/(1+cos x))dx......∫((x−sin x)/(1−cos x))dx......∫((x+cos x)/(1+sin x))dx.....∫((x−cos x)/(1+sin x))dx  ∫((x+cos x)/(1−sin x))dx......∫((x−cos x)/(1−sin x))dx.......∫((x+sin x)/(1−cos x))dx  The same ....

xsinx1+cosxdx......xsinx1cosxdx......x+cosx1+sinxdx.....xcosx1+sinxdxx+cosx1sinxdx......xcosx1sinxdx.......x+sinx1cosxdxThesame....

Answered by puissant last updated on 15/Sep/21

Ω=∫((x+sinx)/(1+cosx))dx  =∫(x/(1+cosx))dx+∫((sinx)/(1+cosx))dx  =∫xsec^2 ((x/2))dx−ln∣cosx∣+C  =xtan((x/2))−∫tan((x/2))dx−ln∣cosx∣+C  =xtan((x/2))+2ln∣cos((x/2))∣−ln∣cosx∣+C    ∴∵ Ω=xtan((x/2))+2ln∣cos((x/2))∣−ln∣cosx∣+C..

Ω=x+sinx1+cosxdx=x1+cosxdx+sinx1+cosxdx=xsec2(x2)dxlncosx+C=xtan(x2)tan(x2)dxlncosx+C=xtan(x2)+2lncos(x2)lncosx+C∴∵Ω=xtan(x2)+2lncos(x2)lncosx+C..

Answered by maged last updated on 15/Sep/21

I=∫(x/(1+cosx)).((1−cosx)/(1−cosx))dx+∫((sinx)/(1+cosx)).((1−cosx)/(1−cosx))dx  =∫((x(1−cosx))/(sin^2 x))dx+∫(1/(sinx))dx  I=∫xcosec^2 xdx−∫xcotxcosecxdx+∫cosecxdx  u=x→du=dx  dv=cosec^2 xdx→v=−cotx   −−  u=x→du=dx  dv=−cotxcosecxdx→v=cosecx  −−  I=−xcotx+xcosecx+∫cotxdx−∫cosecxdx+∫cosecxdx  =xcosecx−xcotx−ln(sinx)+C

I=x1+cosx.1cosx1cosxdx+sinx1+cosx.1cosx1cosxdx=x(1cosx)sin2xdx+1sinxdxI=xcosec2xdxxcotxcosecxdx+cosecxdxu=xdu=dxdv=cosec2xdxv=cotxu=xdu=dxdv=cotxcosecxdxv=cosecxI=xcotx+xcosecx+cotxdxcosecxdx+cosecxdx=xcosecxxcotxln(sinx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com