All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 6027 by FilupSmith last updated on 10/Jun/16
xx=exlnxex=1+x+x22!+x33!+...∴exlnx=1+xln(x)+(xlnx)22!+...exlnx=(xlnx)00!+(xlnx)11!+(xlnx)22!+...xx=exlnx=∑∞n=0xn(lnx)nn!Question:∫01xxdx=∑∞i=0∫01xn(lnx)nn!dxbysubstituting:x=exp(−un+1),0<u<∞showthat:∫01xn(lnx)n=(−1)n(n+1)−(n+1)∫0∞une−udu
Commented by FilupSmith last updated on 10/Jun/16
∫01xxdx=∑∞i=0∫01xn(lnx)nn!dxx=e−un+1⇒u=−(n+1)ln(x)dx=−1n+1e−un+1x=0⇒u=∞x=1⇒u=0∴∫01xnln(x)n=∫∞0e−unn+1ln(e−un+1)n(−1n+1e−un+1)du=−∫0∞e−(unn+1+un+1)1n+1(−un(n+1)n)du=−(n+1)−(n+1)∫0∞e−uunduMyanswerismissing(−1)n.Why???
online6:∫01xnln(x)n=∫∞0e−unn+1ln(e−un+1)n(−1n+1e−un+1)du=−∫0∞e−unn+1((−1)nun(n+1)n)(−1n+1e−un+1)du=(−1)n(n+1)−(n+1)∫0∞e−uundu=(−1)n(n+1)−(n+1)n!∫01xxdx=∑∞n=1∫01xnln(x)nn!dx=∑∞n=11n!(−1)n(n+1)−(n+1)n!=∑∞n=1(−1)n(n+1)−(n+1)∴∫01xxdx=∑∞n=1(−1)n(n+1)−(n+1)
canweevaluatetheRHS?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com