Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6027 by FilupSmith last updated on 10/Jun/16

x^x =e^(xln x)   e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  ∴ e^(xln x)  = 1+xln(x)+(((xln x)^2 )/(2!))+...  e^(xln x)  = (((xln x)^0 )/(0!))+(((xln x)^1 )/(1!))+(((xln x)^2 )/(2!))+...  x^x =e^(xln x) =Σ_(n=0) ^∞ ((x^n (ln x)^n )/(n!))  Question:  ∫_0 ^( 1) x^x dx=Σ_(i=0) ^∞ ∫_0 ^1  ((x^n (ln x)^n )/(n!))dx  by substituting:  x=exp(−(u/(n+1))),     0<u<∞  show that:  ∫_0 ^( 1) x^n (ln x)^n =(−1)^n (n+1)^(−(n+1)) ∫_0 ^( ∞) u^n e^(−u) du

xx=exlnxex=1+x+x22!+x33!+...exlnx=1+xln(x)+(xlnx)22!+...exlnx=(xlnx)00!+(xlnx)11!+(xlnx)22!+...xx=exlnx=n=0xn(lnx)nn!Question:01xxdx=i=001xn(lnx)nn!dxbysubstituting:x=exp(un+1),0<u<showthat:01xn(lnx)n=(1)n(n+1)(n+1)0uneudu

Commented by FilupSmith last updated on 10/Jun/16

∫_0 ^( 1) x^x dx=Σ_(i=0) ^∞ ∫_0 ^1  ((x^n (ln x)^n )/(n!))dx  x=e^(− (u/(n+1)))   ⇒  u=−(n+1)ln(x)  dx=−(1/(n+1))e^(− (u/(n+1)))   x=0 ⇒ u=∞  x=1 ⇒ u=0  ∴∫_0 ^( 1) x^n ln(x)^n  = ∫_∞ ^( 0) e^(−((un)/(n+1))) ln(e^(−(u/(n+1))) )^n (−(1/(n+1))e^(− (u/(n+1))) )du  =−∫_0 ^( ∞) e^(−(((un)/(n+1))+(u/(n+1)))) (1/(n+1))(−(u^n /((n+1)^n )))du  =−(n+1)^(−(n+1)) ∫_0 ^( ∞) e^(−u) u^n du  My answer is missing (−1)^n . Why???

01xxdx=i=001xn(lnx)nn!dxx=eun+1u=(n+1)ln(x)dx=1n+1eun+1x=0u=x=1u=001xnln(x)n=0eunn+1ln(eun+1)n(1n+1eun+1)du=0e(unn+1+un+1)1n+1(un(n+1)n)du=(n+1)(n+1)0euunduMyanswerismissing(1)n.Why???

Commented by FilupSmith last updated on 10/Jun/16

on line 6:  ∫_0 ^( 1) x^n ln(x)^n  = ∫_∞ ^( 0) e^(−((un)/(n+1))) ln(e^(−(u/(n+1))) )^n (−(1/(n+1))e^(− (u/(n+1))) )du  =−∫_0 ^( ∞) e^(−((un)/(n+1))) ((((−1)^n u^n )/((n+1)^n )))(−(1/(n+1))e^(−(u/(n+1))) )du  =(−1)^n (n+1)^(−(n+1)) ∫_0 ^( ∞) e^(−u) u^n du  =(−1)^n (n+1)^(−(n+1)) n!    ∫_0 ^( 1) x^x dx=Σ_(n=1) ^∞ ∫_0 ^( 1) ((x^n ln(x)^n )/(n!))dx  =Σ_(n=1) ^∞ (1/(n!))(−1)^n (n+1)^(−(n+1)) n!  =Σ_(n=1) ^∞ (−1)^n (n+1)^(−(n+1))     ∴ ∫_0 ^( 1) x^x dx=Σ_(n=1) ^∞ (−1)^n (n+1)^(−(n+1))

online6:01xnln(x)n=0eunn+1ln(eun+1)n(1n+1eun+1)du=0eunn+1((1)nun(n+1)n)(1n+1eun+1)du=(1)n(n+1)(n+1)0euundu=(1)n(n+1)(n+1)n!01xxdx=n=101xnln(x)nn!dx=n=11n!(1)n(n+1)(n+1)n!=n=1(1)n(n+1)(n+1)01xxdx=n=1(1)n(n+1)(n+1)

Commented by FilupSmith last updated on 10/Jun/16

can we evaluate the RHS?

canweevaluatetheRHS?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com