Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 168276 by Florian last updated on 07/Apr/22

    y = (√(x+(√(x+(√x)))))      y′ =

y=x+x+xy=

Commented by cortano1 last updated on 07/Apr/22

 y′=((1+((1+(1/(2(√x))))/(2(√(x+(√x))))))/(2(√(x+(√(x+(√x)))))))

y=1+1+12x2x+x2x+x+x

Commented by Florian last updated on 08/Apr/22

???

???

Answered by greogoury55 last updated on 07/Apr/22

 y=(√(x+(√(x+(√x)))))   y^2 −x = (√(x+(√x)))    (y^2 −x)^2 −x=(√x)   (d/dx) ((y^2 −x)^2 −x)= (d/dx)((√x) )   2(y^2 −x)(2yy′−1)−1 = (1/(2(√x)))  ⇒2(y^2 −x)(2yy′−1)=((1+2(√x))/(2(√x)))  ⇒2yy′−1= ((1+2(√x))/(4(√x) (√(x+(√x))))) =((1+2(√x))/(4(√(x^2 +x(√x)))))  ⇒2yy′= ((1+2(√x)+4(√(x^2 +x(√x))))/(4(√(x^2 +x(√x)))))  ⇒y′ = ((1+2(√x)+4(√(x^2 +x(√x))))/(8(√(x^2 +x(√x))) (√(x+(√(x+(√x)))))))  ⇒y′= ((1+2(√x)+4(√(x^2 +x(√x))))/(8(√((x^2 +x(√x))(x+(√(x+(√x))))))))

y=x+x+xy2x=x+x(y2x)2x=xddx((y2x)2x)=ddx(x)2(y2x)(2yy1)1=12x2(y2x)(2yy1)=1+2x2x2yy1=1+2x4xx+x=1+2x4x2+xx2yy=1+2x+4x2+xx4x2+xxy=1+2x+4x2+xx8x2+xxx+x+xy=1+2x+4x2+xx8(x2+xx)(x+x+x)

Commented by Florian last updated on 07/Apr/22

Very Good!

VeryGood!

Answered by Mathspace last updated on 07/Apr/22

y^2 =x+(√(x+(√x)))  ⇒(y^2 −x)^2 =x+(√x) ⇒  2(2yy^′ −1)(y^2 −x)=1+(1/(2(√x))) ⇒  4yy^′ =((2(√x)+1)/(2(√x)(y^2 −x)))=((2(√x)+1)/(2(√x)(√(x+(√x)))))+2  ⇒y^′ =(1/(4y)){((3(√x)+1)/(2(√(x^2 +x(√x))))) +2}

y2=x+x+x(y2x)2=x+x2(2yy1)(y2x)=1+12x4yy=2x+12x(y2x)=2x+12xx+x+2y=14y{3x+12x2+xx+2}

Answered by Florian last updated on 07/Apr/22

     y =(√(x+(√(x+(√x)))))         y′=((√(x+(√(x+(√x))))))′             →g_1 =x+(√(x+(√x)))         y′=((√g_1 ))′(x+(√(x+(√x))))′         y′=(1/(2(√g_1 )))((x)′+((√(x+(√x))))′)     →g_2 =x+(√x)         y′=(1/(2(√g_1 )))(1+((√g_2 ))′(x+(√x))′         y′=(1/(2(√g_1 )))(1+(1/(2(√g_2 )))(1+(1/( 2(√x))))         y′=(1/(2(√g_1 )))(1+(1/(2(√(x+(√x)))))(1+(1/(2(√x)))))         y′=(1/(2(√g_1 )))(1+((2(√(x+1)))/(4(√(x^2 +(√x)x)))))         y′=(1/(2(√(x+(√(x+(√x)))))))(1+((2(√(x+1)))/(4(√(x^2 +(√x)x)))))         y′=(1/(2(√(x+(√(x(√x)))))))×((4(√(x^2 +(√x)x))+2(√x)+1)/(4(√(x^2 +(√x)x))))         y′=((4(√(x^2 +(√x)x))+2(√x)+1)/(8(√((x+(√(x+(√x))))(x^2 +(√x)x)))))

y=x+x+xy=(x+x+x)g1=x+x+xy=(g1)(x+x+x)y=12g1((x)+(x+x))g2=x+xy=12g1(1+(g2)(x+x)y=12g1(1+12g2(1+12x)y=12g1(1+12x+x(1+12x))y=12g1(1+2x+14x2+xx)y=12x+x+x(1+2x+14x2+xx)y=12x+xx×4x2+xx+2x+14x2+xxy=4x2+xx+2x+18(x+x+x)(x2+xx)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com